arviz_base.from_numpyro#
- arviz_base.from_numpyro(posterior=None, *, prior=None, posterior_predictive=None, predictions=None, constant_data=None, predictions_constant_data=None, log_likelihood=False, index_origin=None, coords=None, dims=None, pred_dims=None, extra_event_dims=None, sample_dims=None, num_chains=None)[source]#
Convert NumPyro mcmc inference data into a DataTree object.
For a usage example read Converting NumPyro objects to DataTree
If no dims are provided, this will infer batch dim names from NumPyro model plates. For event dim names, such as with the ZeroSumNormal, infer={“event_dims”:dim_names} can be provided in numpyro.sample, i.e.:
# equivalent to dims entry, {"gamma": ["groups"]} gamma = numpyro.sample( "gamma", dist.ZeroSumNormal(1, event_shape=(n_groups,)), infer={"event_dims":["groups"]} )
There is also an additional extra_event_dims input to cover any edge cases, for instance deterministic sites with event dims (which dont have an infer argument to provide metadata).
- Parameters:
- posterior
numpyro.infer.MCMC|NumPyroInferenceAdapter A fitted MCMC object from NumPyro, or an instance of a child class of NumPyroInferenceAdapter.
- prior
dict, optional Prior samples from a NumPyro model
- posterior_predictive
dict, optional Posterior predictive samples for the posterior
- predictions
dict, optional Out of sample predictions
- constant_data
dict, optional Dictionary containing constant data variables mapped to their values.
- predictions_constant_data
dict, optional Constant data used for out-of-sample predictions.
- log_likelihoodbool, default
False Whether to compute and include log likelihood in the output.
- index_origin
int, optional - coords
dict, optional Map of dimensions to coordinates
- dims
dictof {strlistofstr}, optional Map variable names to their coordinates. Will be inferred if they are not provided.
- pred_dims
dict, optional Dims for predictions data. Map variable names to their coordinates. Default behavior is to infer dims if this is not provided
- extra_event_dims
dict, optional Extra event dims for deterministic sites. Maps event dims that couldnt be inferred to their coordinates.
- sample_dims
listofstr, optional Names of the sample dimensions (e.g., [“chain”, “draw”] for MCMC, [“sample”] for SVI). Must be provided if posterior is None. If posterior is provided, this argument is ignored and overwritten with posterior.sample_dims.
- num_chains
int, optional Number of chains used for sampling. Defaults to 1 for MCMC if not provided. Ignored if posterior is present.
- posterior
- Returns: